设备树与驱动的关系 您所在的位置:网站首页 linux 设备树与驱动 设备树与驱动的关系

设备树与驱动的关系

#设备树与驱动的关系| 来源: 网络整理| 查看: 265

inux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码。比如在ARM Linux内,一个.dts(device tree source)文件对应一个ARM的machine,一般放置在内核的"arch/arm/boot/dts/"目录内,比如exynos4412参考板的板级设备树文件就是"arch/arm/boot/dts/exynos4412-origen.dts"。这个文件可以通过$make dtbs命令编译成二进制的.dtb文件供内核驱动使用。

基于同样的软件分层设计的思想,由于一个SoC可能对应多个machine,如果每个machine的设备树都写成一个完全独立的.dts文件,那么势必相当一些.dts文件有重复的部分,为了解决这个问题,Linux设备树目录把一个SoC公用的部分或者多个machine共同的部分提炼为相应的.dtsi文件。这样每个.dts就只有自己差异的部分,公有的部分只需要"include"相应的.dtsi文件, 这样就是整个设备树的管理更加有序。我这里用`Linux4.8.5源码自带的dm9000网卡为例来分析设备树的使用和移植。这个网卡的设备树节点信息在"Documentation/devicetree/bindings/net/davicom-dm9000.txt"有详细说明,其网卡驱动源码是"drivers/net/ethernet/davicom/dm9000.c"

b3cd03f9b6868a35f4549325097a4cdb.png 设备树框架

设备树用树状结构描述设备信息,它有以下几种特性

每个设备树文件都有一个根节点,每个设备都是一个节点。节点间可以嵌套,形成父子关系,这样就可以方便的描述设备间的关系。每个设备的属性都用一组key-value对(键值对)来描述。每个属性的描述用;结束

所以,一个设备树的基本框架可以写成下面这个样子

/{ //根节点 node1{ //node1是节点名,是/的子节点 key=value; //node1的属性 ... node2{ //node2是node1的子节点 key=value; //node2的属性 ... } } //node1的描述到此为止 node3{ key=value; ... } } 节点名

理论个节点名只要是长度不超过31个字符的ASCII字符串即可,此外Linux内核还约定设备名应写成形如[@]的形式,其中name就是设备名,unit_address就是设备地址,如果有应该写上,下面就是典型节点名的写法

dc0920a7d09dc7774c117a8b1f796257.png

Linux中的设备树还包括几个特殊的节点,比如chosen,chosen节点不描述一个真实设备,而是用于firmware传递一些数据给OS,比如bootloader传递内核启动参数给内核

1ffef17e2e7afb87bff4d62219af3858.png 引用

当我们找一个节点的时候,我们必须书写完整的节点路径,这样当一个节点嵌套比较深的时候就不是很方便,所以,设备树允许我们用下面的形式为节点标注引用(起别名),借以省去冗长的路径。这样就可以实现类似函数调用的效果。编译设备树的时候,相同的节点的不同属性信息都会被合并到设备节点中,而相同的属性会被覆盖,使用引用可以避免移植者四处找节点,直接在板级.dts增改即可。

aa46b10702316efa16e2c36701cc23a0.png

下面的例子中就是直接引用了dtsi中的一个节点,并向其中添加/修改新的属性信息

3e8ace059990b0c2b9a24a6796434c1a.png KEY

在设备树中,键值对是描述属性的方式,比如,Linux驱动中可以通过设备节点中的"compatible"这个属性查找设备节点。Linux设备树语法中定义了一些具有规范意义的属性,包括:compatible, address, interrupt等,这些信息能够在内核初始化找到节点的时候,自动解析生成相应的设备信息。此外,还有一些Linux内核定义好的,一类设备通用的有默认意义的属性,这些属性一般不能被内核自动解析生成相应的设备信息,但是内核已经编写的相应的解析提取函数,常见的有 "mac_addr""gpio""clock""power""regulator" 等等。

compatible

设备节点中对应的节点信息已经被内核构造成struct platform_device。驱动可以通过相应的函数从中提取信息。compatible属性是用来查找节点的方法之一,另外还可以通过节点名或节点路径查找指定节点。dm9000驱动中就是使用下面这个函数通过设备节点中的"compatible"属性提取相应的信息,所以二者的字符串需要严格匹配。

bde588d64f561792b3142d68312e3a9f.png

86b1e5e654dda92a8b472f714205ea6e.png address

(几乎)所有的设备都需要与CPU的IO口相连,所以其IO端口信息就需要在设备节点节点中说明。常用的属性有

#address-cells,用来描述子节点"reg"属性的地址表中用来描述首地址的cell的数量,#size-cells,用来描述子节点"reg"属性的地址表中用来描述地址长度的cell的数量。

有了这两个属性,子节点中的"reg"就可以描述一块连续的地址区域。下例中,父节点中指定了"#address-cells = " "#size-cells = ",则子节点dev-bootscs0中的reg中的前两个数表示一个地址,最后的0x4表示地址跨度是0x4

a9171a7886433c3c2b3f19be64964f81.png interrupts

一个计算机系统中大量设备都是通过中断请求CPU服务的,所以设备节点中就需要在指定中断号。常用的属性有

interrupt-controller 一个空属性用来声明这个node接收中断信号#interrupt-cells,是中断控制器节点的属性,用来标识这个控制器需要几个单位做中断描述符,用来描述子节点中"interrupts"属性使用了父节点中的interrupts属性的具体的哪个值。一般,如果父节点的该属性的值是3,则子节点的interrupts一个cell的三个32bits整数值分别为:,如果父节点的该属性是2,则是interrupt-parent,标识此设备节点属于哪一个中断控制器,如果没有设置这个属性,会自动依附父节点的interrupts,一个中断标识符列表,表示每一个中断输出信号

这里,在我板子上的dm9000的的设备节点中,"interrupt-parent"使用了exynos4x12-pinctrl.dtsi(被板级设备树的exynos4412.dtsi包含)中的gpx0节点的引用,而在gpx0节点中,指定了"#interrupt-cells = ;",所以在dm9000中的属性"interrupts = ;"表示指定gpx0中的属性"interrupts"中的"",通过查阅exynos4412的手册知道,对应的中断号是EINT[6]。

4f4ef2d5180e76d5524c3d9b611be26b.png

61422bb9f0e442bcec01c64359e6d9f3.png gpio

gpio也是最常见的IO口,常用的属性有

"gpio-controller",用来说明该节点描述的是一个gpio控制器"#gpio-cells",用来描述gpio使用节点的属性一个cell的内容,即 属性 =

d224a30a2a60d9de581e2cd177b9c5cb.png 驱动自定义key

针对具体的设备,有部分属性很难做到通用,需要驱动自己定义好,通过内核的属性提取解析函数进行值的获取,比如dm9000节点中的下面这句就是自定义的节点属性,用以表示配置EEPROM不可用。

13eaeb730805550825e3f0dd0b9b4128.png VALUE

dts描述一个键的值有多种方式,当然,一个键也可以没有值

字符串信息

7f61bf779c4dd5ce8b2df1b3362cca14.png 32bit无符号整型数组信息

1e0faa3cd76cbe8ae8d3dc8c00876c0f.png 二进制数数组

51909b48a3f55a7f94c8648dd4c90130.png 字符串哈希表

f71b9146b5e1e2ee75dadbdc891c240a.png 混合形式

上述几种的混合形式

设备树/驱动移植

设备树就是为驱动服务的,配置好设备树之后还需要配置相应的驱动才能检测配置是否正确。比如dm9000网卡,就需要首先将示例信息挂接到我们的板级设备树上,并根据芯片手册和电路原理图将相应的属性进行配置,再配置相应的驱动。需要注意的是,dm9000的地址线一般是接在片选线上的,我这里用的exynos4412,接在了bank1,所以是""最终的配置结果是:

d9fb4c29fc6e6b980bb0249420b53db4.png

勾选相应的选项将dm9000的驱动编译进内核。

make menuconfig [*] Networking support ---> Networking options ---> Packet socket Unix domain sockets [*] TCP/IP networking [*] IP: kernel level autoconfiguration Device Drivers ---> [*] Network device support ---> [*] Ethernet driver support (NEW) ---> DM9000 supportFile systems ---> [*] Network File Systems (NEW) ---> NFS client support [*] NFS client support for NFS version 3 [*] NFS client support for the NFSv3 ACL protocol extension [*] Root file system on NFS

执行make uImage;make dtbs,tftp下载,成功加载nfs根文件系统并进入系统,表示网卡移植成功

468cec70a95af0e903aebf6e094db776.png

b9a43e98942ec35fbee7a8fa79ed84cc.png

另外还有一些关于c++ Linux后台服务器开发的一些知识点分享:Linux,Nginx,MySQL,Redis,P2P,K8S,Docker,TCP/IP,协程,DPDK,webrtc,音视频等等视频。

喜欢的朋友可以后台私信【1】获取学习视频

6254018c2b8269d7735f57b23d19c8b1.png


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有